
 
 
 
 
 
 
 
 
 
 
 
 
 

Integration of health outcomes, air quality, and socio-economic data 
in Northwest Florida 

 
 
 

  
 
 
 

Dr. Johan Liebens  
Department of Environmental Studies  

University of West Florida  
 

 Dr. Zhiyong Hu  
Department of Environmental Studies  

University of West Florida 
 

Dr. K. Ranga Rao  
Center for Environmental Diagnostics and Bioremediation  

University of West Florida  
 
 
 
 
 
 
 

August 15, 2009



 i

Table of Contents 
 
 

 
1 Introduction ...................................................................................................................................1 

2 Health Tracking Study ..................................................................................................................1 

2.1 Introduction ....................................................................................................................1 

2.2 Results ............................................................................................................................2 

2.3 Health Tracking Conclusions .........................................................................................5 

3 Air Emitter Proximity Study .........................................................................................................6 

3.1 General ...........................................................................................................................6 

3.2 Cumulative Health Outcomes ........................................................................................6 

3.3 Specific Health Outcomes ..............................................................................................8 

 3.4 Environmental Inequity ...............................................................................................11 

3.5 Proximity Study Conclusions ......................................................................................11 

4 Air Toxics Modeling ...................................................................................................................11 

4.1 Introduction ..................................................................................................................11 

4.2 Results ..........................................................................................................................12 

4.2.1 Stationary Point Sources ...............................................................................12 

4.2.2 Traffic Sources ..............................................................................................14 

4.2.3 Acute Health Risks From Emissions From Crist Plant .................................14 

4.3 Air Toxics Modeling Conclusions ...............................................................................14 

5 Geostatistical Study ....................................................................................................................15 

5.1 Introduction ..................................................................................................................15 

5.2 Data ..............................................................................................................................15 

5.3 Mapping, Analyses And Modeling Results .................................................................15 

5.3.1 Mapping ........................................................................................................16 

5.3.2 Exploratory Spatial Data Analysis (ESDA) ..................................................16 

5.3.3 Spatial Lag Model Of Asthma And Air Pollution ........................................16 

5.3.4 Mortality Rates Of COPD, Stroke, And Lung Cancer Compared With     
Socio-Economic And Environmental Factors .......................................................18 

5.3.4.1 Focused Score Tests .......................................................................18 

5.3.4.2 OLS Regression Analyses..............................................................19 



 ii

5.3.5 Bayesian Hierarchical Modeling Of Stroke Mortality And Air Pollution, 
Income, And Greenness .........................................................................................21 

5.3.6 Correlating MODIS Aerosol Optical Depth Data With Ground-Based  

PM2.5 Observations ...............................................................................................22 

5.3.7 Relationships Between Myocardial Infarction (MI) And AOD ...................24 

5.3.8 Relationships Between Chronic Coronary Heart Disease (CCHD) 

And AOD ...............................................................................................................26 

5.3.9 Association Of CCHD With PM2.5..............................................................28 

6 Overall Conclusions ....................................................................................................................29 

7 Acknowledgements .....................................................................................................................30 

8 Outcomes And Outputs ...............................................................................................................30 

8.1 Final Reports ................................................................................................................30 

8.2 Dissemination Of Results: Conference Presentations ..................................................30 

8.3 Dissemination Of Results: Academic Publications .....................................................34 

8.4 Dissemination Of Results: Media Reports ...................................................................35 

8.5 Graduate Students Trained At UWF ............................................................................35 

8.6 Outcomes .....................................................................................................................35 



 iii

List of Tables 
 
 

Table 1. Summary of results from mortality models. ......................................................................2 

Table 2. Summary of results from morbidity models.  ....................................................................4 

Table 3. Spatial lag model of asthma and air pollution. ................................................................18 

Table 4. Focused score tests of relationships between mortality rates of COPD, stroke, and 
lung cancer with socio-economic and environmental factors. .......................................................18 

Table 5. Univariate OLS regression of disease rates on suspected factors.  ..................................20 

Table 6.  Multivariate OLS regression for COPD. ........................................................................20 

Table 7. Multivariate OLS regression for stroke. ..........................................................................21 

Table 8. Multivariate OLS regression for lung cancer. .................................................................21 

Table 9  Markov chain Monte Carlo results for Bayesian hierarchical modelling of stroke 
mortality vs. income, air pollution, and greenness. .......................................................................22 

Table 10. Correlation and geographically weighted regression results for the four PM  

monitoring sites in the study area. .................................................................................................23 

Table 11. MI and AOD: spatial error model.  ................................................................................25 

Table 12. Markov chain Monte Carlo simulation results for Bayesian hierarchical modeling of 
MI vs. AOD. ..................................................................................................................................25 

Table 13. Spatial error regression model. ......................................................................................28 

Table 14. CCHD, AOD and PM2.5 data for Escambia and Santa Rosa Counties. .......................28 

Table 15. Results of Bayesian hierarchical modeling.  ..................................................................29 

 

 



 iv

List of Figures 
 
 
 
Figure 1. Map of summary of mortality models. .............................................................................3 

Figure 2. Map of summary of morbidity models. ............................................................................4 

Figure 3. Comparison of birth defects in Escambia and Santa Rosa County ZIP codes 
and associated (matching) ZIP codes. ..............................................................................................5 

Figure 4a. Benzene weighted TRI proximity index for NW FL ZIP codes with 
better cumulative health outcomes vs. associated ZIP codes. .........................................................7 

Figure 4b. Benzene weighted TRI proximity index for NW FL ZIP codes with 
worse cumulative health outcomes vs. associated ZIP codes. .........................................................8 

Figure 5a. Proximity index for Zip codes with high or low incidence for specific causes 
of mortality: Comparison within northwest Florida. .......................................................................9 

Figure 5b. Proximity index for Zip codes with high or low incidence for specific causes 
of morbidity: Comparison within northwest Florida. ......................................................................9 

Figure 6a. Proximity index for Zip codes with high or low incidence for specific causes 
of mortality: Comparison with matching Zip codes. .....................................................................10 

Figure 6. Proximity index for Zip codes with high or low incidence for specific causes  
of morbidity: Comparison with matching Zip codes. ....................................................................10 

Figure 7. Elevated chronic cancer risk zones estimated by the RAIMI system. ...........................13 

Figure 8. Maps of point source polluters. ......................................................................................16 

Figure 9. Zip-code level environmental exposure map. ................................................................17 

Figure 10. Kernel estimates of the posterior density of the fixed effects in the Bayesian 
hierarchical model.  ........................................................................................................................22 

Figure 11. PM2.5 surface calculated by merging MODIS AOD and EPA PM2.5 ground 
measurements.  ...............................................................................................................................23 

Figure 12.  Raster surface of correlation between PM2.5 and MODIS AOD. ................................24 

Figure 13. R squares of geographically weighted regression of PM2.5 on MODIS AOD. ...........24 

Figure 14. Coefficient kernel density curves, Bayesian hierarchical model  

(SMR of MI vs. AOD) for eastern US. ..........................................................................................26 

Figure 15. CCHD rate and AOD: bivariate Moran’s I scatter plot. ...............................................27 



 v

Figure 16. CCHD rate and AOD: local indicator of spatial association (LISA). ..........................27 

Figure 17. Kernel estimates of the posterior densities of the fixed effects in the Bayesian 
hierarchical model.  ........................................................................................................................29



 1

1 INTRODUCTION 
 
The local incidence of some illnesses is perceived to be elevated by many citizens in Escambia 
and Santa Rosa Counties. Many assume that this perceived elevated incidence is due to the 
multitude of environmental pollution issues in the area, especially air pollution. To address this 
concern of the citizens, PERCH carried out a health tracking study that compares mortality and 
morbidity rates in the two-county area with those elsewhere in the state of Florida. To relate the 
results of this Zip code level health study to air pollution, PERCH evaluated relationships 
between the health outcomes and the proximity of the Zip codes to air emission sites. This 
proximity study pointed to possible connections between some specific health outcomes and the 
location of air emission sites, but was somewhat limited in its potential by the large spatial unit 
(Zip codes) used in the health tracking study. Therefore, PERCH further assessed the 
connections between air pollution and health outcomes with two other approaches, air toxics 
modeling and geostatistical modeling. Results of these four studies (health tracking, proximity 
analysis, air toxics modeling, and geostatistical modeling) are briefly summarized and related to 
each other in the remainder of this report. 
 
 
2 HEALTH TRACKING STUDY 
 
2.1 Introduction 
 
There is considerable interest in being able to relate geographic patterns of exposure to air 
pollution to variation in the health status of populations. These spatially defined associations 
between environmental hazards and population health are referred to as environmental health 
tracking studies. In its health tracking study, PERCH adopted a strategy to investigate if specific 
Zip codes in Escambia and Santa Rosa Counties had rates of health indicators that were higher 
(at a statistically significant level) than matched comparison Zip codes 
(http://www.uwf.edu/CEDB/Perch_USF_EPA_April04.pdf). Patterns of such differences across 
multiple indicators and age/race strata could suggest potential Zip codes in the region that should 
be targeted for study as more detailed environmental data becomes available.  
 
The investigators of the health outcome study (PERCH project collaborators from the University 
of South Florida) identified a list of health indicators that were thought to be sensitive to 
increased exposure to airborne environmental hazards. Both mortality and morbidity indicators 
were included. The mortality indicators, which might best be characterized as health conditions 
that would be affected by long-term exposure to environmental hazards, included deaths from: 
(1) all cancers, (2) lung cancers alone, (3) cardiovascular diseases, (4) any respiratory disease, 
(5) birth defects, and (6) all causes of death to infants. The morbidity indicators, which might 
best be characterized as being sensitive to short-term exposure to environmental hazards, 
included hospitalizations for (1) asthma, (2) cardiovascular disease, and (3) respiratory disease. 
Two additional morbidity indicators, numbers of live births with very low birth weight and the 
number of live births with low birth weight were added. While these indicators have not been 
directly associated with airborne environmental exposures they have been widely used as 
indicators of poor population health.  
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A cross-sectional observational study design was employed to compare the selected health 
outcome measures for Zip codes within the two counties with Zip codes having similar 
demographic and socio-economic characteristics from the remainder of Florida (matches). 
Escambia and Santa Rosa Zip codes were matched using propensity scores that were calculated 
through a series of logistic regression equations that included the following independent 
variables: percent female, percent of the population over 65 years of age, percent of the 
population that is black, percent of the population that is Hispanic, total population, the percent 
of households earning $15,000 or less, and per capita income.  
 
A series of generalized linear (Poisson regression) models were developed to test whether 
standardized 5-year mortality/morbidity ratios for each Escambia and Santa Rosa County Zip 
code were different than those from the matched comparison Zip codes at a statistically 
significant level. Specifically, least squares means for each health indicator studied, for five 
years of data, were compared after adjusting for age, gender, percent of the population that is 
black, percent of the population over the age of 65 and the percent of households earning 
$15,000 per year or less. Five years of data were included in the analysis to measure impact over 
a reasonable time period and to increase the power of the statistical tests.  
 
2.2 Results 
 
The majority of statistically significant differences for mortality related to birth defect and infant 
mortality. Only one Zip code (32570) had significantly higher rates across more than one 
category of disease (Table 1, Figure 1). Table 1 summarizes the results of the models for 
mortality by listing the number of health outcomes that had a statistically significantly higher 
incidence in the given Zip code than in the matching Zip codes. These results are graphically 
depicted in Figure 1.  
 
 

Table 1. Summary of results from mortality models. 

Zip code County 
Blacks Whites 

All ages Over 65 All ages Over 65 
32570 SR 3s/1w* 2s/1w 1s/1w 1s/1w 
32566/ 
32561 SR 2w 2w - 3s/1w 

32534 ES 2s/1w 1s/1w - - 
32501 ES 1s/2w 1s/1w 1s - 
32577 ES 1s/2w - 2s - 
32533 ES 1s/1w - - - 
32503 ES 1s/2w - - - 

* s indicates strong statistical evidence, w indicates weak statistical evidence. 



 3

 
 
Figure 1. Map of summary of mortality models. Darker colors indicate a greater burden of 
disease. 
 
 
Fewer statistically significant differences in which Zip codes had higher rates of disease than the 
matching Zip codes were found in the morbidity models than in the mortality models. The 
morbidity health indicators, unlike the mortality indicators, fall primarily into one disease group 
(cardio-respiratory). There were relatively few statistically significant results for models based 
on the total population or on the total white or black population. More consistent patterns were 
found in the models for those over the age of 65 (Table 2). Table 2 summarizes the results of the 
models for morbidity by listing the number of health outcomes that had a statistically 
significantly higher incidence in the given Zip code than in the matching Zip codes. These results 
are graphically described Figure 2.  
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Table 2. Summary of results from morbidity models. 

Zip code County 
Blacks Whites 

All ages Over 65 All ages Over 65 
32570  SR 1s* 4s 2s 1s 
32535/ 
32565  ES 2s 3s 3s 1w 

32566/  
32561  SR - 1s - 3s 

32583/  
32530  SR - 1w 1s 1w 

32571  SR - 1s - 1w 
32533  ES 1s 1w - - 
32504  ES - 2s - - 
32501  ES - 1w - - 

* s indicates strong statistical evidence, w indicates weak statistical evidence. 
 
 

 
 
Figure 2. Map of summary of morbidity models. Darker colors indicate a greater burden of 
disease. 
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2.3 Health Tracking Conclusions 
 
In general, health outcomes for ZIP codes in Escambia and Santa Rosa Counties differ spatially 
and some ZIP codes have significantly higher or lower levels of adverse health outcomes than 
matching ZIP codes elsewhere in Florida (see Figure 3 for example). This indicates that for some 
specific health outcomes and some specific Zip codes the citizen's concerns about high rates may 
be justified, but this health tracking study did not find evidence that the overall health of the 
population of Escambia and Santa Rosa Counties is significantly different from that in socio-
economically and demographically comparable areas in the remainder of Florida. 
 
 

 
 
Figure 3. Comparison of birth defects in Escambia and Santa Rosa County ZIP codes and 
associated (matching) ZIP codes. 
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3 AIR EMITTER PROXIMITY STUDY 
 
3.1 General 
 
To evaluate if the results of the health outcomes study may be influenced by air pollution we 
compared the results with the geographical distribution of air emitters in the area. For this task 
we collected various types of spatially referenced data for air emitters. The data included: (1) 
Year 2000 Toxic Release Inventory (TRI) air pollution data including name, location, and 
emission data; (2) State of Florida permitted minor source emitters from 2002 with their name, 
address, and type of permit; and (3) A year 2000 dataset from the local Florida DEP office that 
had the location of 108 major and minor permitted air emitters in Northwest Florida but did not 
have emission data.  
 
As a first step in the spatial comparison of health outcomes and air pollution data we developed a 
distance index that represents the proximity of a ZIP code to emission sites. Because of the large 
size of some ZIP codes and the heterogeneity of the population in some ZIP codes the index was 
initially determined for census block groups. For each block group the distance index was 
calculated for emission sites within 10 km from the centroid of the block group as follows: 
 
 

Proximity index for block centroid i  =  
 
 

where di,j is the distance from block centroid i to emission site j.  
 
The indexes were summed by block group and the resulting total indexes for the block groups 
were averaged by ZIP code. Benzene-equivalents for 2002 TRI site air emissions were collected 
from the Environmental Defense website (http://www.scorecard.org/env-
releases/def/tep_cancer.htm). The TRI total emissions and benzene-equivalent emissions were 
used to weight the proximity index resulting in three indexes, i.e. an unweighted index, a total 
emission weighted index and a benzene-equivalent weighted index. Benzene-equivalents were 
not available for the other two emitter data sets (State of Florida and local FL DEP), and only 
unweighted and/or total emission weighted indexes could be calculated for these data sets. 
 
The average proximity indexes for each ZIP code were statistically compared to cumulative 
health outcomes and to specific health outcomes. In both cases, ZIP codes within NW FL were 
compared with each other and with the socio-economically and demographically matching ZIP 
codes elsewhere in the state. The hypothesis of this study was that if morbidity and/or mortality 
in the area are linked to air pollution, Zip codes with worse health outcomes than their matching 
Zip codes should be located closer to air emission sites. 
 
3.2 Cumulative Health Outcomes 
 
In this part of the study the proximity indexes were evaluated for two groups of NW FL ZIP 
codes: ZIP codes identified by the health tracking study as having cumulative evidence for better 

( )( )∑
=

=

−+
1j

sites#j

1
i,j 1dlog
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health outcomes than their respective matching ZIP codes and ZIP codes having cumulative 
evidence for worse health outcomes.  
 
The ZIP codes in NW FL with worse (resp. better) cumulative health outcomes do not 
systematically have higher (resp. lower) proximity indexes than their associated ZIP codes (e.g. 
Figure 4a and 4b). Difference of means testing showed a significant difference (P < 0.05) 
between NW FL and associated ZIP codes only for the benzene weighted TRI proximity index 
and worse outcomes (Figure 4b), but not for the other proximity indexes. Consequently, these 
results for cumulative health outcomes do not show a strong relationship between proximity to 
emission sites and health outcomes in the study area. 
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Figure 4a. Benzene weighted TRI proximity index for NW FL ZIP codes with better cumulative 
health outcomes vs. associated ZIP codes. 
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Poor health outcomes in NW FL
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Figure 4b. Benzene weighted TRI proximity index for NW FL ZIP codes with worse cumulative 
health outcomes vs. associated ZIP codes. See Figure 4a for legend. 
 
 
3.3 Specific Health Outcomes 
 
ZIP codes with a high incidence of some specific health outcomes have a higher proximity index 
than ZIP codes with a low incidence (Figure 5a, b), suggesting that there is a link between 
proximity to emission sites and the incidence of these specific health outcomes. The specific 
health outcomes for which this relationship holds true varies only slightly between the various 
proximity indexes and are: 
 

• Mortality: white, >65, cardiac; black, >65, lung cancer; black, birth defects 
• Morbidity: black, all ages, asthma; black, >65, cardiac; white, >65, pneumonia 

 
For these 6 specific health outcomes NW FL ZIP codes were also compared to their respective 
associated ZIP codes. Graphs shows that NW FL Zip codes with a higher incidence of these 6 
specific health outcomes have a higher proximity index than their matching Zip codes and that 
NW FL Zip codes with a lower incidence have a lower proximity index than their matching Zip 
codes (Figure 6a, b). This observation corroborates the contention that a link exists between the 
proximity to emission sites and the incidence of these specific health outcomes. Weaker 
indications for this link can be observed for mortality in blacks, >65, due to all cancers and 
morbidity in blacks, >65, due to respiratory illnesses (Figure 5a, b; Figure 6a, b). Statistical 
analysis were not performed because of the low number of cases (ZIP codes) in each category. 
These observations for specific health outcomes, both within NW FL and compared to matching 
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Zip codes, suggest that there is an influence of proximity to emission sites on the incidence of 
some of the specific health outcomes. These observations are preliminary and have to be 
confirmed by other analysis using more robust statistics, but they suggest that such further 
evaluation is warranted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5a. Proximity index for Zip codes with high or low incidence for specific causes of 
mortality: Comparison within northwest Florida. Based on statewide database. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5b. Proximity index for Zip codes with high or low incidence for specific causes of 
morbidity: Comparison within northwest Florida. Based on statewide database. 
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Figure 6a. Proximity index for Zip codes with high or low incidence for specific causes of 
mortality: Comparison with matching Zip codes. Based on statewide database. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6b. Proximity index for Zip codes with high or low incidence for specific causes of 
morbidity: Comparison with matching Zip codes. Based on statewide database. 
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3.4 Environmental Inequity 
 
To assess environmental equity the TRI-based proximity indexes were averaged at the census 
tract level and statistically correlated with population density, percent whites, percent non-white, 
poverty rate, industrial employment, and educational attainment. The unweighted proximity 
index showed moderately strong and significant correlation with population density and 
industrial employment. The two emission weighted indexes did not have a strong correlation 
with the demographic and socio-economic variables. These observations indicate that a spatial 
relationship exists between the location of TRI sites and two of the variables (i.e. population 
density and industrial employment) but this does not seem to lead to greater exposure of any 
racial group to emissions. 
 
To further explore potential connections between proximity to emission sites and the 
demographic and socio-economic variables multiple-linear-regressions were run. The R2 value 
was very low for the two weighted TRI proximity indexes (0.09) but somewhat higher (0.24) for 
the unweighted proximity index. Non-linear models yielded comparable R2 values. Population 
density and industrial employment had a statistically significant effect in the regression for the 
unweighted proximity index. These results are consistent with the results for the correlation 
coefficients and also fail to show evidence for environmental inequity in exposure to TRI site 
emissions. 
 
3.5 Proximity Study Conclusions 
 
The air emitter proximity study did not find clear evidence for an influence of proximity to 
emission sites on ZIP code level cumulative health outcomes. Some of the specific health 
outcomes are directly related to proximity to emission sites as evidenced by relationships at the 
Zip code level within NW Florida and comparisons between NW Florida and similar areas 
elsewhere in the state. Preliminary statistical analysis at the census tract level of the proximity 
indexes and demographic and socio-economic data does not indicate environmental inequity in 
exposure to emission sites in NW Florida. PERCH considered this proximity study only a first 
step in evaluating relationships between health outcomes and air pollution in Escambia and Santa 
Rosa Counties because it was hampered by the unavoidable use of spatial units (Zip codes) that 
are not ideally suited for this type of analysis. Therefore, PERCH further assessed connections 
between air pollution and health outcomes with two other approaches, air toxics modeling and 
raster-based geostatistical modeling. 
 
 
4 AIR TOXICS MODELING 

 
4.1 Introduction 
 
As part of its effort to assess all aspects of the environment in Escambia and Santa Rosa 
Counties PERCH carried out a comprehensive evaluation of air pollution in the area, conducted 
by PERCH project collaborators from the Georgia Institute of Technology 
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 (http://www.uwf.edu/CEDB/Perch_Air_Quality_Studies.cfm). Based on a review of ambient 
monitoring data, available information regarding emissions, other studies, and discussions with 
various stakeholders, three classes of air pollutants were found to be of particular concern in the 
area: ground level ozone, fine particulate matter (PM2.5), and air toxics. Health cost estimates 
associated with these pollutants indicated that PM2.5 imposed the highest per person per year 
costs, followed by ozone and then air toxics. Particulate matter likely presents the greatest air 
quality risk to human health in the region. Sulfate is a large fraction of the observed ambient 
PM2.5 loading, with high concentrations most often associated with northerly air flow. 
Additionally, organic carbon was found to be a large fraction of the ambient PM2.5 loading. 
There is community concern regarding air toxics based on TRI discharges from point sources. To 
further try to relate observations of the health tracking study to air quality measures a 
multipronged modeling and analysis approach of air toxics was performed. This air toxics 
modeling study assessed the health risk associated with stationary point sources, traffic sources, 
and one specific emitter (Gulf Power's Plant Crist power plant). The primary objective of the 
modeling was to quantify risk levels in the two-county study area to advise policy- and decision- 
makers about the existence of elevated risks for adverse health outcomes due to toxic air 
pollution. For its modeling, the study employed the Regional Air Impact Modeling Initiative 
(RAIMI) system, which consists of a set of tools designed to evaluate the potential for health 
impacts as a result of exposure to multiple contaminants from multiple sources, at a community 
level of resolution. RAIMI integrates emission data, meteorological data, a dispersion model, and 
risk estimation in a GIS environment and allows estimation and representation of cancer and 
non-cancer risks via inhalation.  
 
4.2 Results 
 
4.2.1 Stationary Point Sources 
Application of the RAIMI system with the 1999 National Emission Inventory (NEI) for the study 
area indicated four concentrated hotspots of potentially elevated cancer risk related to point 
sources (Figure 7). 
 
Risk Zone 1 – Northern Santa Rosa County. Risk Zone 1 is in northern Santa Rosa County in the 
vicinity of three emission sources: a petroleum/natural gas extraction operation, a natural gas 
pipeline compressor station, and a landfill. A maximum cumulative risk of 48 in a million was 
predicted by RAIMI. The peak risk was attributed almost entirely to formaldehyde emissions 
from the natural gas compressor station. This risk zone overlaps mostly with Zip code 32531, in 
which the health study did not find significant differences with the matching Zip codes. 
 
Risk Zone 2 – Northern Santa Rosa County. Risk Zone 2 is also in northern Santa Rosa County 
in the vicinity of two emission sources: a petroleum/natural gas extraction operation and a 
landfill. A maximum cumulative risk of 23 in a million was predicted by RAIMI. The peak risk 
was attributed almost entirely to formaldehyde and toluene emissions from the petroleum/natural 
gas extraction operation.. This risk zone is located in a Zip code (32565) that was merged with 
another one in Escambia County (32535) by the health study due to low population numbers. 
This large combined Zip code was among the worst in the morbidity models of the health study, 
but all of these models were for non-cancer related morbidity. This suggests that the spatial 
overlap of the risk zone with the Zip code with poor health outcomes is coincidental. 
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Risk Zone 3 – Pace Community in Santa Rosa County. Risk Zone 3 is near the Pace community 
in Santa Rosa County in the vicinity of six emission sources: four industrial plants and two 
landfills. A maximum cumulative risk of 709 in a million was predicted by RAIMI. The peak 
risk was attributed almost entirely to acrylonitrile emissions from the acrylic fiber manufacturing 
operation. This risk zones partially overlaps with Zip codes 32571 and 32583, which have worse 
morbidity than their matching Zip codes for some non-cancer health outcomes but not for 
cancers, indicating again that a causal relationship between risk and observed health outcomes 
can not be demonstrated. 
 
Risk Zone 4 – Cantonment Community in Escambia County. Risk Zone 4 is near Cantonment in 
Escambia County about 10 km northwest of Downtown Pensacola in the vicinity of a large pulp 
and paper manufacturing operation. A maximum cumulative risk of 5.4 in a million was mostly 
attributed to methanol, acetaldehyde, benzene and xylene, which are used as chemical solvents in 
the pulping operation. This risk zone partly overlaps with Zip codes 32533 and 32534. Zip code 
32534 has worse rates than its matching Zip codes for some cancer-related causes of mortality in 
African Americans. Both Zip codes have worse mortality due to birth defects. 
 
Results for non-cancer risk from stationary point sources showed two very small areas with 
elevated non-cancer risk on the premises of the emitting facilities (Solutia Inc. and Sterling 
Fibers). Given their very small size, these risk zones do not provide an explanation for the 
findings of the health tracking study. 

 
Figure 7. Elevated chronic cancer risk zones estimated by the RAIMI system. 
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4.2.2 Traffic Sources 
Almost all the regions around the modeled roads in both counties are subject to a cancer risk of 1 
in a million or greater. Large parts of Escambia County and a few regions close to main 
roadways in Santa Rosa County are subject to 10 in a million greater cancer risk. Many parts of 
urban Escambia are subject to estimated cancer risks of more than 100 in a million. In Santa 
Rosa, 100 in a million or greater cancer risk is mainly concentrated along Interstate 10 and US 
98 roadways. As in the case of cancer risks, almost all locations are subject to a hazard index 
(HI) of more than one for non-cancer risks. Higher values of HI (10-100 range) are concentrated 
in the urbanized areas of Escambia and along I-10 and US 98 in Santa Rosa. The risks diminish 
by several orders of magnitude a few hundred meters off the roadway. Given the difference in 
spatial units, these results can not be compared to those for the health tracking study. 
 
 
4.2.3 Acute Health Risks From Emissions From Crist Plant 
One of the emitters in the study area that is often referred to in informal conversations among 
citizens and in the media is the highly visible Crist Plant, a coal-fired power plant. All HCl 
(7,559 tons) and HF (153 tons) emissions in the two-county study area are reported to come from 
this facility. Though these compounds are not carcinogenic, PERCH assessed if the sizable 
emissions could be a source of short-term health risks. For assessing the acute health risks related 
to the significant emissions of HCl and HF from Plant Crist, PERCH used an approach 
developed by the Georgia Environmental Protection Division (EPD). The Georgia EPD approach 
is convenient for modeling applications because it provides, with an appropriate margin of 
safety, a conversion of occupational exposure safety thresholds (typically 8 hours) into more 
relevant averaging periods (e.g., 24 hours) for assumption of continuous exposures. Using risk-
based criteria an acceptable ambient concentration (AAC) can be calculated for each pollutant to 
represent acceptable risk levels for acute (15-minute and 24-hour average) time periods as well 
as chronic exposures (annual average). The modeling protocol followed a similar approach as the 
cancer risk assessment in RAIMI by using the same dispersion model (ISCST3) and 
meteorological data set. Results of the modeling show that HCl and HF ambient impacts from 
Plant Crist are 90 to 98% below the risk-based AAC, and thus they do not appear to present a 
significant acute health risk via inhalation.  
 
4.3 Air Toxics Modeling Conclusions 
 
Air toxics modeling identified four zones in the study area with elevated cancer risk due to 
inhalation of air emissions from stationary point sources. Three of these risk zones overlap with 
Zip codes that were not found by the health tracking study to have significantly elevated cancer 
rates, compared to matching Zip codes elsewhere in the state. It is noteworthy that Zip code 
32570, which is worse than its matching Zip codes for several cancer related health outcomes is 
surrounded by but not covered by these three cancer risk zones. The fourth risk zone, just north 
of Pensacola, partially overlaps with Zip codes where the health tracking study found 
comparatively high rates of some cancers in some sections of the population. Further detailed 
study is required to determine if this spatial association of risk and health outcome is causal. 
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5 GEOSTATISTICAL STUDY 
 
5.1 Introduction 
 
This geostatistical component of PERCH investigated the associations between air pollution and 
health outcomes in Escambia and Santa Rosa counties using three approaches: mapping spatial 
patterns of health outcomes and air pollution, exploratory statistical analyses, and statistical 
modeling. The project was carried out progressively from simple mapping and modeling, to 
more refined mapping using satellite imagery and advanced spatially extended modeling. 
 
5.2 Data 
 
Health outcome data were obtained from the University of South Florida CATCH 
(Comprehensive Assessment for Tracking Community Health) data warehouse, the Florida 
Department of Health CHARTS (Community Health Assessment Resource Tool Set) database, 
and the US Centers for Disease Control and Prevention (CDC) WONDER (Wide-ranging Online 
Data for Epidemiologic Research) records. The downloaded health outcome data at the Zip code 
level included hospitalizations due to cardiac, respiratory problems, COPD, asthma, low birth 
weight, and mortality due to all cancers, lung cancer, cardiac, respiratory problems, birth defects, 
and infant death. Finer resolution health outcome data at the census tract level included 
mortalities due to COPD, stroke, and lung cancer. Data at the county level included myocardial 
infarction (MI) and chronic coronary heart disease (CCHD).  
 
Socio-economic/demographic data at the census tract level for total population, male, female, 
white, black, Asian, Hispanic, 2+ races, 65 and 65+ years old, poverty status, income below 
poverty, and median household income were extracted from the 2000 Census Summary File.  
 
Point source air pollution data (Figure 8) were collected for US EPA Toxic Release Inventory 
(TRI) sites, Superfund sites, and Florida Department of Environmental Protection monitored 
solid waste sites, sewer treatment sites, and brown field sites. For mobile source data traffic 
counts with emission estimates were obtained from the Florida Department of Transportation. 
Density surfaces were derived from all point and mobile source air quality data.  
 
A Normalized Difference Vegetation Index (NDVI) raster surface and a greenness surface 
representing the amount of green space were calculated from a cloud-free Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) imagery. Moderate Resolution Imaging Spectrometer (MODIS) 
daily level 2 (2003-2004) aerosol optical depth (AOD) data in Hierarchical Data Format (HDF) 
were obtained from the NASA Level 1 and Atmosphere Archive and Distribution System 
(LAADS Web) at http://ladsweb.nascom.nasa.gov/.  MODIS Level 2 data are produced at the 
spatial resolution of a 10×10 1-km (at nadir)-pixel array.  
 
PM2.5 ground data was obtained from the EPA Air Quality System (AQS) online Data Mart at 
http://www.epa.gov/ttn/airs/aqsdatamart/index.htm. PM2.5 values measured within 1 hour of the 
MODIS imaging time were retrieved for the year 2004. Annual statistical summary PM2.5 data 
for 2003 and 2004 were also obtained for monitoring sites covering the conterminous land. 
Calculation of annual statistics included exceptional air pollution events.  
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Figure 8. Maps of point source polluters. 
 
 
5.3 Mapping, Analyses And Modeling Results 
 
5.3.1 Mapping  
At the census tract level, three characteristic patterns stand out from environmental exposure 
maps (Figure 9): (1) Zip code 32514 (largest circle in Figure 9b), where Gulf Power's Crist Plant 
is located, has the largest emissions (total air or benzene-equivalent) but has low mortality rates 
(Figures 9a, 9b); (2) all other point source pollutants are concentrated within the urban extent 
(Figures 9c, 9d); and (3) traffic volume has the highest density in the City of Pensacola, along 
Interstate 10, and highways 90, 98 and 29 (Figures 9e, 9f). 
 
5.3.2 Exploratory Spatial Data Analysis (ESDA) 
A parallel coordinate plot was created to show values for Mortality Respiratory Total Population 
(MTPR) and six environmental exposure variables (TRI total air emission, TRI benzene-
equivalent emission, DEP emitters emission, all other point sources, traffic density, and NDVI). 
Again, Zip code 32514 area stands out as highlighted in the plot and the map due to its high 
emission values.  
 
A Moran’s I plot was generated for total population respiratory hospital admission rates. The 
Moran’s I value is 0.47, indicating strong spatial autocorrelation. Zip codes 32577 and 32568 
have much lower respiratory hospital admission rates than their neighbors.  
 
5.3.3 Spatial Lag Model Of Asthma And Air Pollution 
The model shows relationships between the total population asthma hospitalization rate and air 
pollution (positive, 0.08 <p < 0.26) and ‘greenness’ (negative, p = 0.23) (Table 3).  
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Figure 9. Zip-code level environmental exposure maps. 
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Table 3. Spatial lag model of asthma and air pollution. 
 _____________________________________________________ 

 
Variable      Coefficient       Probability 
____________________________________________________ 
    ρ                 0.3645          0.087 

                             Constant        0.7242          0.019 
                                                Traffic        1.6192e-005           0.110 
                                                Greenness      -0.221                 0.230 
                                                TRI benzene          8.6748e-006             0.256 
                                                TRI Total                     1.6497e-006                0.147 

     DEPEMIT        0.0021                                  0.085 
     Other point pollution     1.2563                0.115 
_____________________________________________________ 

 
5.3.4 Mortality Rates Of COPD, Stroke, And Lung Cancer Compared With Socio-
Economic And Environmental Factors 
 
5.3.4.1 Focused Score Tests 
Maps reveal linkages between some of these health outcomes and the environmental and socio-
demographic factors. High COPD mortality tends to occur in areas with high poverty rates. 
Scatter plots show relationships between death rates and suspected factors. Mortality rates of all 
three diseases show positive relationships with proportion blacks, population age 65 and above, 
and the poor, as well as mobile and point source air pollution, and negative relationships with 
median household income, percentage males, and greenness. 
 
Table 4 shows the results of focused score tests. The table indicates significant focused 
clustering of the deaths of COPD, stroke, and lung cancer around traffic pollution and point 
source pollution. The amount of greenness does not show significant relationships with the 
deaths.  
 
 

Table 4. Focused score tests of relationships between mortality rates of COPD, 
stroke, and lung cancer with socio-economic and environmental factors. 

___________________________________________________________ 
Disease  Foci  *

scT   p value 
  ___________________________________________________________ 

COPD  Traffic  3.3415  0.00042   
Point source 3.1594  0.00079    
Greenness 0.2946  0.38414    

Stroke  Traffic                13.6522  <0.0001   
Point source 9.0468  <0.0001   
Greenness           -7.6334  1.00000   

Lung Cancer Traffic  4.8486  <0.0001   
Point source 3.4729  0.00026   
Greenness            0.2577    0.39834    

   ___________________________________________________________ 
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5.3.4.2 OLS Regression Analyses 
Table 5 shows the OLS univariate regression results. Higher COPD, stroke, and lung cancer 
mortality rates occurred in census tracts with lower median household income, percentage of 
male population, and greenness. However, the relationship between stroke and percent male and 
the relationships between all the three health outcomes and greenness are not significant. All the 
mortality rates are significantly positively associated with proportion blacks, people age 65 or 
above, poverty rate, and air pollution from both mobile and point sources. Regression of COPD 
has the lowest fits with R-square values ranging from 0.01 (greenness) to 0.15 (poverty rate). 
The models fit best for stroke with R-square values between 0.02 (percent males) and 0.56 
(percent blacks). AADT explains 37.84% of the variability in stroke death rate. For lung cancer, 
the proportion of people age 65 and above has the largest R-square value (0.23).  
                        
Tables 6-8 show OLS multivariate regression results for each disease. At the level of 0.10, 
COPD is significantly positively associated with air pollution from both mobile and point 
sources, and negatively related to median household income and percent of male population. 
Stroke shows significant positive relationship with population with age 65 or above and air 
pollution, and negative relationship with median household income. The same relationships are 
found for lung cancer death rate. Lung cancer also shows a negative relationship with the percent 
male population. The stroke model fits best (R2 = 0.53). The lung cancer model has an R2  value 
of 0.49. The COPD model has the weakest fit (R2 = 0.26). 
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Table 5. Univariate OLS regression of disease rates on suspected factors. 
___________________________________________________________________ 
 
Dependent variable Independent variable Slope  p-value  R-square 
_____________________________________________________________________________________________________ 
COPD   Income   -1.58e-008   0.00450  0.1026   
   Black   0.00075     0.00690  0.0932   
   Population >65  0.00400  0.00214  0.1187 
   Male   -643.033  0.00305  0.1111 
   Poor   0.002226 0.00047  0.1513 
   Traffic   1.16e-008 0.00323  0.1099 
   Greenness  -5.89e-006 0.43225  0.0082 
   Point source  0.003351 0.00525  0.0993 
Stroke   Income   -1.29E-007 <0.0001  0.2470 
   Black   0.00966  0.00000  0.5558 
   Population >65  0.03265  <0.0001  0.2830 
   Male   -0.0063  0.26835  0.0163 
   Poor   0.01607  <0.0001  0.2821 
   Traffic   1.136E-007 <0.0001  0.3784  

    Greenness  -0.00013  0.00045  0.1522 
   Point source  0.01721  0.00680  0.0936 
    
Lung cancer  Income   -3.894e-008 <0.0001  0.1935 
   Black   0.00164  0.00085  0.1386 
   Population  >65  0.00994  <0.0001  0.2272 
   Male   -0.00738  <0.0001  0.1910 
   Poor   0.00457  <0.0001  0.1975 
   Traffic   2.136e-008 0.00247  0.1158 
   Greenness  -5.885e-006 0.66302  0.0025 
   Point source  0.00650  0.00247  0.1157 
__________________________________________________________________________________ 

 
 

Table 6.  Multivariate OLS regression for COPD. 
________________________________________________________________________ 
Dependent Variable  :    COPD rate 
R-squared           :    0.258502  F-statistic           :     4.95042 
Adjusted R-squared  :    0.206284  Prob(F-statistic)     : 0.000605213 
Sum squared residual:1.75527e-005  Log likelihood        :     479.565 
Sigma-square        :2.47221e-007  Akaike info criterion :     -947.13 
S.E. of regression  : 0.000497214  Schwarz criterion     :    -933.067 
Sigma-square ML     :2.27957e-007 
S.E of regression ML: 0.000477449 
----------------------------------------------------------------------- 
Variable      Coefficient     Probability 
----------------------------------------------------------------------- 
CONSTANT      0.003582364      0.0000160 
Income      -1.599449e-08     0.0188372 
Population >65   0.00205754       0.1554837 
MALE     -0.001912757      0.0997262 
Traffic          5.886609e-09     0.0057732 
Point source     0.002795998      0.0682218 
________________________________________________________________________ 
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Table 7. Multivariate OLS regression for stroke. 
_______________________________________________________________________ 
Dependent Variable  :  Stroke rate     
R-squared           :    0.533386  F-statistic           :      16.232  
Adjusted R-squared  :    0.500526  Prob(F-statistic)     :1.19759e-010  
Sum squared residual: 0.000308776  Log likelihood        :      369.17  
Sigma-square        :4.34896e-006  Akaike info criterion :    -726.339  
S.E. of regression  :  0.00208542  Schwarz criterion     :    -712.276  
Sigma-square ML     :4.01008e-006  
S.E of regression ML:  0.00200252    
----------------------------------------------------------------------- 
    Variable     Coefficient     Probability  
----------------------------------------------------------------------- 
CONSTANT      0.002217874     0.0999130 
Income    -5.678549e-08    0.0442312 
Population >65   0.02213693      0.0001146 
Traffic      6.209707e-08    0.0353378 
Green     -4.30978e-05     0.1851318 
Point source     0.004164622     0.0524035 
_______________________________________________________________________ 
   

 
 

Table 8. Multivariate OLS regression for lung cancer. 
_______________________________________________________________________ 
Dependent Variable  :   Lung cancer rate   
R-squared           :    0.493561  F-statistic           :     13.8389  
Adjusted R-squared  :    0.457896  Prob(F-statistic)     :1.96394e-009  
Sum squared residual:  3.872e-005  Log likelihood        :     449.106  
Sigma-square        :5.45352e-007  Akaike info criterion :    -886.211  
S.E. of regression  :  0.00073848  Schwarz criterion     :    -872.148  
Sigma-square ML     :5.02857e-007  
S.E of regression ML: 0.000709124    
----------------------------------------------------------------------- 
    Variable     Coefficient     Probability  
----------------------------------------------------------------------- 
CONSTANT    0.006729455     0.0000001 
Income    -4.961127e-08   0.0000037 
Population >65 0.006191974     0.0048375 
MALE    -0.005135011    0.0035637 
Traffic    2.799079e-08    0.0041351 
Point source 0.006985843     0.0026527 
_______________________________________________________________________ 

 
 

5.3.5 Bayesian Hierarchical Modeling Of Stroke Mortality And Air Pollution, Income, And 
Greenness  
An ecological geographical approach was adopted using census tract level stroke data and a 
Bayesian hierarchical model. The mean age-adjusted stroke death rates were 8.39 times the 
average age-adjusted stroke rate in the US South. Table 9 provides the estimated posterior mean, 
median, and associated 95% credible set for each of the fixed effects. Figure 10 provides kernel 
estimates of the corresponding posterior densities. Table 9 and Figure 10 reveal strong negative 
effects of income and greenness (the posterior densities of 1β  and 5β  primarily covers negative 
values) and positive effects of both mobile and point source air pollution (the 95% credible sets 
cover positive values). High risk of stroke mortality was found in areas with low income level, 
high air pollution level, and low level of exposure to green space.  
 
 



 22

Table 9  Markov chain Monte Carlo results for Bayesian hierarchical modelling of stroke 
mortality vs. income, air pollution, and greenness.* 

 
* Posterior means, medians, and 95% credible sets are based on 5,000 postconvergence iterations 
(from 5,001 to 10,000). Fixed effects are: 0β - intercept, 1β - income effect, 2β -traffic air 
pollution effect, 3β - effect of EPA and Florida DEP monitored point source air emission, 4β - 
effect of non-monitored point source air pollution, and 5β - greenness. 
 
 

 

Figure 10. Kernel estimates of the posterior density of the fixed effects in the Bayesian 
hierarchical model. 
 
5.3.6 Correlating MODIS Aerosol Optical Depth Data With Ground-Based PM2.5 
Observations 
Years 2003 and 2004 daily MODIS Level 2 AOD (aerosol optical depth) images were collated 
with US EPA PM2.5 data covering the conterminous USA. Pearson’s correlation analysis and 
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geographically weighted regression (GWR) found that the relationship between PM2.5 and AOD 
is not spatially consistent across the conterminous states. The average correlation is 0.67 in the 
east and 0.22 in the west. GWR predicts well in the east and poorly in the west. The GWR model 
was used to derive a PM2.5 grid surface  (Figure 11) using the mean AOD raster calculated using 
the daily AOD data (RMSE = 1.67 µg/m3).  
 
There are 4 PM monitors in Escambia and Santa Rosa counties. Table 10 shows EPA monitor 
source IDs, coordinates, correlations between PM2.5 and MODIS AOD, GWR R squares, and 
GWR constants and AOD coefficients.  Figures 12 and 13 show the correlation surface and R 
squares of geographically weighted regression of PM2.5 on MODIS AOD.  
 
 

 
Figure 11. PM2.5 surface calculated by merging MODIS AOD and EPA PM2.5 ground 
measurements.  
 
 
Table 10. Correlation and geographically weighted regression results for the four PM monitoring 

sites in the study area. 

EPA Source ID Latitude Longitude Correlation GWR 
R2 

GWR AOD 
Coefficient 

GWR 
Constant 

120330026881011 30.550 -87.376 0.738 0.53 0.023 9.374 
120330004881011 30.525 -87.204 0.705 0.509 0.023 9.424 
120330025881011 30.437 -87.256 0.647 0.507 0.023 9.386 
121130014881011 30.408 -86.890 0.691 0.519 0.023 9.374 
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Figure 12.  Raster surface of correlation between PM2.5 and MODIS AOD. 
 
 

 
Figure 13. R squares of geographically weighted regression of PM2.5 on MODIS AOD. 
 
 
5.3.7 Relationships Between Myocardial Infarction (MI) And AOD 
Two models were fitted to examine the effect of AOD on MI. One is a spatial error model and 
the other is a Bayesian hierarchical model. The spatial error model used SMR as the dependent 
variable and AOD as the explanatory variable. Model results are shown in Table 11. The 
coefficient on the spatially correlated errors (λ) has a positive effect and is highly significant.  
AOD has a significantly positive coefficient (coefficient = 2.3173, p<0.001). Higher risk of MI is 
associated with higher aerosol optical depth. 
 
A Bayesian hierarchical model was also fitted with a convolution prior to considering a county 
specific covariate – AOD. Table 12 and Figure 14 show the model results. The AOD coefficient 
kernel density curve reveals a positive effect of AOD on MI. The 95% credible set is (0.3208, 
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0.4708) for the AOD effect. Similar to the spatial error model above, the Bayesian model showed 
positive association between MI and AOD. 
 
 

Table 11. MI and AOD: spatial error model. 

 

 
 

Table 12. Markov chain Monte Carlo simulation results for Bayesian hierarchical 
modeling of MI vs. AOD. 

_____________________________________________________________________________________________ 
Node Mean Standard MC Error 2.5% Median 97.5% Start Number of 
  Deviation     Iteration No. Samples 
 
a0  -1.977 0.2309 0.007435 2.437 -1.976 -1.536 10000 180002 
a1 0.3943 0.03839 0.001234 0.3208 0.394 0.4708 10000 180002 
_____________________________________________________________________________________________ 
a0 – Intercept, a1 - Effect of aerosol optical depth (AOD) 
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Figure 14. Coefficient kernel density curves, Bayesian hierarchical model (SMR of MI vs. AOD) 
for eastern US. 
 
 
5.3.8 Relationships Between Chronic Coronary Heart Disease (CCHD) And AOD 
Race and age standardized mortality rate (SMR) of CCHD was computed for each of the 2306 
counties in the eastern USA for the time period 2003-2004. A mean AOD raster grid for the 
same period was derived from Moderate Resolution Imaging Spectrometer (MODIS) aerosol 
data and the average AOD was calculated for each county. A bivariate Moran’s I scatter plot, a 
map of local indicator of spatial association (LISA) clusters, and three regression models 
(ordinary least square, spatial lag, and spatial error) were used to analyze the relationships 
between AOD and CCHD SMR. The global Moran's I (Figure 15) value is 0.2673 (p =0.001), 
indicating an overall positive spatial correlation of CCHD SMR and AOD. The entire study area 
is dominated by spatial clusters of AOD against SMR (high AOD and high SMR in the east, and 
low AOD and low SMR in the west) (permutations = 999, p=0.05) (Figure 16). Of the three 
regression models, the spatial error model achieved the best fit (R2 =0.28). The effect of AOD is 
positive and significant (beta = 0.7774, p= 0.01) (Table 13).  
 
Aerosol particle pollution has an adverse effect on CCHD mortality risk in the eastern US. High 
risk of CCHD mortality was found in areas with elevated levels of outdoor aerosol pollution, as 
indicated by satellite derived AOD. Escambia and Santa Rosa counties of Florida have relatively 
low rates of CCHD (SMR< 1) (Table 14). The LISA map shows that the two counties have high 
AOD values but low SMRs (Figure 16).  
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Figure 15. CCHD rate and AOD: bivariate Moran’s I scatter plot. 
 
 
 

 
 
Figure 16. CCHD rate and AOD: local indicator of spatial association (LISA). 
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Table 13. Spatial error regression model. 
 
Model description 

 
Y No. of variables No. of observations Degrees of freedom 

SMR 2 2306 2304 

Model fit 

 
R2 Log likelihood  AIC 

0.2800 -201.834  407.669 

Model estimation 

 

Variable Coefficient Std. Error t-Statistic p 

CONSTANT 0.7506 0.0509 14.759 0.0000 

AOD 0.7774 0.3022 2.573 0.0101 

λ 0.5678 0.0231 24.600 0.0000 

Diagnostic tests 

 Tests DF Value p 

Heteroskedasticity Breusch-Pagan 1 0.067 0.7954 

Spatial dependence Likelihood Ratio 1 501.856 0.0000 

 
 
 

Table 14. CCHD, AOD and PM2.5 data for Escambia and Santa Rosa Counties. 
County Observed 

CCHD 
Expected 
CCHD 

SMR AOD PM2.5 

Escambia 1584 1675 0.946 0.197 12.334 
Santa Rosa 531 542 0.980 0.194 12.507 

 
 
5.3.9 Association Of CCHD With PM2.5 
A Bayesian hierarchical model was employed to link PM2.5 predicted with the GWR model with 
age-race standardized mortality rates (SMRs) of chronic coronary heart disease (CCHD). The 
study found that chronic coronary heart disease mortality rate increases with exposure to PM2.5. 
(Figure 17 and Table 15). High risk of CCHD mortality was found in areas with elevated levels 
of fine particulate air pollution. The association between CCHD mortality and PM2.5 justifies 
the need of further toxicological studies of the influence of fine particulate air pollution on the 
heart. The evidence of raised CCHD mortality risk in high pollution areas supports targeting 
policy interventions on such areas to reduce pollution levels. Aerosol remote sensing like that 
used in the present study could help fill pervasive data gaps that impede efforts to study air 
pollution and protect public health.  
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Figure 17. Kernel estimates of the posterior densities of the fixed effects in the Bayesian 
hierarchical model.  
 
 

Table 15. Results of Bayesian hierarchical modeling. 
________________________________________________________________________________________________________ 
Fixed  Posterior Posterior Standard MC 95% Credible 
effects     mean   median deviation error        set 
 
β0  -0.264  -0.273  0.064  0.003  (-0.366, -0.117)  
β1  0.802  0.812  0.223  0.010  ( 0.386,  1.225) 
_____________________________________________________________________ 
* Posterior means, medians, and 95% credible sets are based on 20,000 post-convergence 
iterations (from 60,001 to 80,000). Fixed effects are: β0 - intercept, β1 – effect of PM2.5. 
 
 
6 OVERALL CONCLUSIONS 
 
The health tracking study carried out by PERCH indicates that some Zip codes in Escambia and 
Santa Rosa Counties have worse health outcomes than socio-economically and demographically 
matching Zip codes elsewhere in Florida, but other Zip codes in the area have better health 
outcomes than their matching Zip codes. These variations in health outcomes do not show clear 
spatial trends nor are they consistent for any one specific health outcome. An initial study of air 
pollution suggests that the proximity to stationary air emission sites may influence the incidence 
of some of the specific health outcomes, but not overall health. Geostatistical modeling 
corroborates this observation. Other exposures and life style decisions not evaluated in the 
PERCH studies may also affect the incidence of these specific health outcomes. A PERCH study 
that examined risk associated with inhalation of air pollution identified four zones with elevated 
cancer risk. One of these zones, the smallest one, coincides spatially with parts of Zip codes that 
have an elevated incidence of some health outcomes, but a direct cause and effect between risk 
and incidence was not established.  
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8 OUTCOMES AND OUTPUTS 
 
8.1 Final Reports 
 
Health Tracking Study: http://www.uwf.edu/CEDB/Perch_USF_EPA_April04.pdf 
Air Toxics Study: http://www.uwf.edu/CEDB/Perch_Air_Quality_Studies.cfm 
 
8.2 Dissemination Of Results: Conference Presentations 
 
2009 Hu, Z. and K. R. Rao. “Evaluating the relationship between chronic ischemic heart 
disease and air pollution using satellite aerosol optical depth data.”  Annual meeting of the 
Association of American   Geographers, Las Vegas, Nevada. 
 

Abstract: This project first examined the relationship between U.S. EPA ground 
monitored PM2.5 concentration values and MODIS (Moderate Resolution Imaging 
Spectrometer) aerosol optical depth data for the conterminous U.S.  MODIS Level 2 
images were compared with PM2.5 data for the year 2004 with imaging time collated 
with PM2.5 measurement time within one hour. The Pearson's correlation value was 
calculated for each point containing at least 8 pairs of data values. Significant positive 
correlations between PM2.5 and AOD were found to be to the east of the -100° longitude 
line. For the year 2004, a geographically weighted regression (GWR) model was also 
fitted to examine the relationship between PM2.5 and AOD using annual mean PM2.5 
and MODIS Level 3 AOD. It can be seen from the map of local R square that GWR 
predicts well in the eastern U.S. and poorly in the west. The coefficient raster surface 
AOD exhibits regional variation. The relationship between PM2.5 and AOD is not 
spatially consistent (stationary) across the conterminous states. Eastern U.S. shows higher 
AOD coefficient values, while values in the west are lower.  Ecological spatial regression 
models and a Bayesian hierarchical simulation model using disease data at the county 
level for the eastern U.S. revealed a significant positive relationship between chronic 
ischemic heart disease mortality and AOD.  The strong correlation between PM2.5 and 
AOD in the east suggests that AOD could be used as an air quality indicator to assess 
health effect of air pollution. 
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2008 Hu, Z., J. Liebens and K. R. Rao. “Assessing heath effect of aerosol particles using 
MODIS AOD remote sensing data.”  The 31st International Geographical Congress. Tunis, 
Tunisia. August 2008. 
 

Abstract: Although most regulations of air pollution focus on gases, aerosol particles 
cause possibly more health problems than do gases. PM2.5 causes the most severe health 
problems. For the use of public health assessment, particulate matter ground monitoring 
data often lacks spatially complete coverage. Some studies have found that satellite 
remotely sensed aerosol optical depth (AOD) is positively correlated to ambient PM 
concentration. This study assesses MODIS AOD and fine AOD data against spatio-
temporally collocated EPA ground PM2.5 monitoring data for the conterminous U.S. for 
the year 2004. It was found that MODIS level 2 hourly AOD has a high positive 
correlation with PM2.5 east of the -100 degree longitude line while western region shows 
no correlation. MODIS level 3 yearly mean fine AOD shows overall significant positive 
relationship with PM2.5. A spatial lag model using aggregate data at county level shows 
that low birth weight rate is positively associated with fine AOD. Satellite measurement 
of fine AOD could directly be used as an air pollution indicator for public health effect 
assessment. 

 
 
2008 Hu, Z. and K. R. Rao. “Extraction of particulate matter surface from MODIS Data for 
linking stroke mortality with air pollution in Northwest Florida.”  Annual Meeting of the 
Association of American Geographers, Boston, MA. 
 

Abstract: Using Northwest Florida as the study area, this project intends to determine if 
there is association between stroke mortality and particulate matter concentration. Stroke 
death count data at the census tract level was obtained from Florida Vital Statistics in a 5-
year (1998-2002) aggregate. Expected counts were calculated by adjusting ages using the 
National Vital Statistical System data for the US south as standard population. EPA's Air 
Quality System (AQS) ground-based PM2.5 measurements were obtained for the year 
2000. However, the number of monitor stations is too limited to be useful for reliable 
interpolation for creating a PM2.5 surface. Previous studies have demonstrated that 
NASA Moderate Resolution Imaging Spectrometer (MODIS) satellite Aerosol Optical 
Depth (AOD) has positive relationship with PM2.5 during the warm season (April - 
September). Therefore, Terra MODIS AOD data for April through September of 2000 
were grouped and the data values for the monitor sites were regressed on the measured 
PM2.5 concentration values.  The regression equation was used to calculate a PM2.5 
surface. The average PM2.5 concentration for each census tract was calculated using a 
GIS zonal statistic function. A Bayesian hierarchical model allowing for a convolution 
prior for the random effects was fitted using the Markov chain Monte Carlo (MCMC) 
simulation method. A 5,000 update burn in followed by a further 20,000 updates yielded 
the parameter for PM2.5 with the mean equal to 1.675 and a 95% credible set of (1.469, 
1.875), which shows the strong positive relationship between stroke mortality and PM2.5. 
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2008 Hu, Z., J. Liebens and K. R. Rao. “Spatial associations between air emissions and health 
outcomes.” Department of Mathematics University of West Florida Colloquium Series.  
 

No abstract.  
 
 

2008 Hu, Z., J. Liebens and K. R. Rao. “Remote sensing of air quality and Bayesian 
hierarchical modeling of relationship between air pollution and disease.” Division of 
Environmental Health Environmental Public Health Tracking Florida Department of Health.  
 

No abstract.  
 
 
2008 Liebens, J., Z. Hu and K.R. Rao. “Spatial associations between air emissions and health 
outcomes.” Colloquium Series, Department of Mathematics, University of West Florida, 
Pensacola, FL. 
 
 No abstract 
 
 
2007 Liebens, J. and K. Flanders. “Associations between spatial patterns of air emissions and 
morbidity.” Annual Meeting of the Association of American Geographers, San Francisco, CA. 
 

Abstract: The incidence of some health outcomes is statistically significantly higher in 
NW Florida than in demographically, economically, and socially similar areas elsewhere 
in the state. Northwest Florida also has high rates of water and air pollution. Health 
outcomes have been shown elsewhere to be affected by environmental factors. This study 
examined if the spatial patterns of some of the health outcomes with high incidence in 
NW Florida are spatially associated with patterns of air emissions. The study also 
assessed the sensitivity of the results to the inclusion in the analysis of various types of 
air emission sources. Emission patterns were linked to the health outcomes with an index 
for the proximity of census blocks to emission sources. The proximity index was used 
unweighted, weighted with total source strength emission data, and with benzene 
equivalent emissions for Toxic Release Inventory (TRI) sites. The resulting three indexes 
for the census blocks were summarized by census tract or ZIP code as required by the 
pre-existing health data. Results show that various national and state government 
emission databases are inconsistent and have spatial information of greatly varying 
quality. Morbidity for specific respiratory illnesses such as pneumonia and asthma are 
associated with patterns of air emissions for some of the emission database/proximity 
index combinations. Cancer morbidity shows little influence from emissions. Racial 
inequity in exposure to air emissions is very small in the study area and does not affect 
health outcomes appreciably. Supported by EPA Cooperative Agreement X-9745500. 
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2007 Liebens, J. and K. Flanders. “Associations between spatial patterns of air emissions and 
health outcomes.” NW Florida Regional Environmental Symposium, University of West Florida, 
Pensacola, FL. 
 

Abstract: The incidence of some health outcomes is statistically significantly higher in 
NW Florida than in demographically, economically, and socially similar areas elsewhere 
in the state. Elsewhere, health outcomes have been shown to be affected by 
environmental factors. This study examined if the spatial patterns of some of the health 
outcomes with high incidence in NW Florida are spatially associated with patterns of air 
emissions. Emission patterns were linked to the health outcomes with an index for the 
proximity of census blocks to emission sources. The proximity index was used 
unweighted, weighted with total source strength emission data, and with benzene 
equivalent emissions for Toxic Release Inventory (TRI) sites. The resulting three indexes 
for the census blocks were summarized by census tract or ZIP code as required by the 
pre-existing health data. Results show that various national and state government 
emission databases are inconsistent and have spatial information of greatly varying 
quality. Morbidity for specific respiratory illnesses such as pneumonia and asthma are 
associated with patterns of air emissions for some of the emission database/proximity 
index combinations. Cancer morbidity shows little influence from emissions. Supported 
by EPA Cooperative Agreement X-9745500. 
 
 

2007 Hu, Z., J. Liebens and K. R. Rao. “Exploring relationship between asthma and air 
pollution: a geospatial methodology using dasymetric mapping, GIS analysis and spatial 
statistics.” The 15th International Conference on Geoinformatics, Nanjing, China, 2007. 
 

Abstract: This paper presents methodology using dasymetric mapping from remotely 
sensed imagery, geographic information system (GIS), spatial analysis and spatial 
statistics to explore relationship between asthma and air pollution in the Pensacola 
metropolitan region of Florida. Health outcome indicators thought to be sensitive to 
increased exposure of airborne environmental hazards are mortality and morbidity rates 
for total population asthma patients. Environmental data for the time around the year 
1999 include point source pollution sites and emissions, traffic count with emission 
estimates, and a Landsat ETM+ image. Standardized mortality/morbidity ratios (SMRs) 
were used as dependent variables for the analysis. A centroid map was created from the 
zip code map with each centroid assigned the corresponding SMR values. Then spatial 
interpolation using the Kriging method was used to generate continuous SMR surfaces. 
An emission or point count based kernel density raster map was created from each of the 
air pollution maps. A raster layer ‘greenness’ was extracted using tasseled cap 
transformation from the Landsat ETM+ image. The dasymetric mapping technique was 
employed to limit the analysis and modeling to the area where human activities occur. 
The ETM+ image was classified into a thematic land use/cover map and the developed 
area extracted. A road network was combined with the developed area to generate a 
buffer (buffer distance = 1.5 km). A random sample with enough number of points was 
generated across the study area and 505 points were found within the developed area and 
the buffer. Data values at these sample points were extracted and used for statistical 
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modeling. Two spatial autoregressive models (spatial error and spatial lag) were fitted. 
Both models show relationship between the asthmas outcome indicators and air pollution 
(positive) and ‘greenness’ (negative). 

 
 

2005 Worley A. and J. Liebens. “Relationships between health outcomes and air pollution in 
Northwest Florida.” (poster, A. Worley as first author). Annual Meeting of the Southeastern 
Division of the Association of American Geographers, Palm Beach, FL. 
 

Abstract: Morbidity and mortality in Northwest Florida vary spatially at the ZIP code 
level and, for some ZIP codes, are significantly different from those in socially and 
demographically similar ZIP codes elsewhere in the state. We examined if in Northwest 
Florida statistical and spatial relationships exist between morbidity and mortality, 
demography and air pollution, and compared these results with those for the similar ZIP 
codes elsewhere in the state. To this end, we calculated proximity indexes for permitted 
air emitters within 10 km of Census 2000 block centroids for all ZIP codes in an existing 
health outcome study for the region. The indexes were weighted separately with TRI site 
total emissions, benzene equivalent pound emissions from TRI sites, and with a 
combination of FDEP major and minor air emitters. Results indicate that differences in 
mortality and morbidity within Northwest Florida are not statistically related to the 
weighted proximity indexes. Proximity indexes for Northwest Florida ZIP codes and the 
socially and demographically similar ZIP codes are comparable. Statistical analysis does 
not identify environmental inequity in proximity to TRI sites in Northwest Florida. 
Supported by EPA Cooperative Agreement X-9745500. 
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Health Geographics, 7-20. 

 
Hu, Z., J. Liebens, and K. R. Rao, 2008. Assessing heath effects of aerosol particles using 

MODIS AOD remote sensing data.”  Proceedings of the 31st International Geographical 
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Hu, Z., J. Liebens, and K. R. Rao, 2007. Exploring relationship between asthma and air 

pollution: a geospatial methodology using dasymetric mapping, GIS analysis and spatial 
statistics. Geoinformatics 2007: Geospatial Information Science. Proceedings of SPIE Vol. 
6753, 67532T. SPIE: The International Society for Optical Engineering. 

 
8.4 Dissemination Of Results: Media Reports 
 
1. Independent News (newspaper): Air pollution and disease, 2/28/2008 
2. ABC WEAR-TV News interview of Z. Hu 
 
8.5 Graduate Students Trained At UWF 
 
Angela Worley, Kristal Flanders, Brail Stephens, Michael Somerville. 
 
8.6 Outcomes 
 
PERCH project studies provided, for the first time, a detailed analysis of air quality and the 
potential impacts on human health in Northwest Florida.  These analyses included novel 
methodologies (e.g., proximity index analysis, geostatistical analysis) that could have wider 
applications nationally and abroad.  RAIMI system, first developed and applied by EPA Region 
6, has been successfully applied for analysis of air toxics impacts in Northwest Florida—first 
such application in the geographic area covered by EPA Region 4. 
 
The results of our analysis have been communicated to the scientific community through 
presentations at professional meetings and publications in peer-reviewed journals and conference 
proceedings, and thus contributing new knowledge to the areas of investigation. As a result of 
our findings, additional collaborative work with Florida Department of Health is being done to 
assist in ongoing environmental public health tracking.  
 
Our results have also been widely publicized through local news media (news papers, TV 
coverage) and by postings at our web site.  As a result, there is an increased awareness of our 
study outcomes among the public, and also recognition of issues of concern by the city, county, 
and state governmental agencies. This should enable them to facilitate measures that would 
further enhance air quality and protection of public health.  


